Register Now
Why register?
 The leading web portal for pharmacy resources, news, education and careers November 20, 2017
Pharmacy Choice - Pharmaceutical News - "Pharmaceutical Composition and Method for Neoangiogenesis/Revascularization Useful in Treating Ischemic Heart Disease" in Patent Application... - November 20, 2017

Pharmacy News Article

 4/30/17 - "Pharmaceutical Composition and Method for Neoangiogenesis/Revascularization Useful in Treating Ischemic Heart Disease" in Patent Application...

"Pharmaceutical Composition and Method for Neoangiogenesis/Revascularization Useful in Treating Ischemic Heart Disease" in Patent Application Approval Process (USPTO 20170095495)

By a News Reporter-Staff News Editor at Heart Disease Weekly A patent application by the inventors Li, Ming (Hong Kong, CN); Cheng, Lei (Hong Kong, CN); Liu, Hong Wei (Beijing, CN), filed on December 15, 2016, was made available online on April 13, 2017, according to news reporting originating from Washington, D.C., by NewsRx correspondents (see also Patents).

This patent application has not been assigned to a company or institution.

The following quote was obtained by the news editors from the background information supplied by the inventors: "Ischemic heart diseases including coronary heart disease and heart infarction are diseases due to insufficient coronary blood supply or interruption of the blood supply to a part of the heart, causing damages or death of heart muscle cells. It is the leading cause of death for both men and women over the world. For example, about 1.5 million Americans suffer a heart attack each year (that's about one heart attack every 20 seconds) and millions suffer from ischemic heart diseases,

"During remodeling progress post infarction, neoangiogenesis/revascularization to the infarcted heart tissues is insufficient to keep pace with the tissue growth required for contractile compensation and is unable to support the greater demands of the hypertrophied but viable myocardium, especially the myocardium along the border zone of the infarct-the cardiomyocytes at risk. The relative lack of oxygen and nutrients to the hypertrophied myocytes might be an important etiological factor in the death of otherwise viable myocardium, resulting in progressive infarct extension and fibrous replacement. Therefore, the most direct way to rescue the cardiac myocytes at risk apparently is to establish a new blood supply at an early stage that would allow circulating stem cells, nutrients and growth factors, in addition to oxygenation, to be delivered to the infarct zone. Restoration of coronary blood flow by rapid angiogenesis should offer a direct and effective therapeutic modality to intractable ischemic heart diseases.

"Although therapeutic angiogenesis has been studied intensively as an alternative treatment for ischemic vascular diseases using growth factors such as VEGF, aFGF, bFGF or PDGF, these factors take weeks to act.sup.1-6, while myocardial necrosis due to coronary occlusion occurs very rapidly within a matter of hours .sup.5, 7, 8. The consequence is that fibrous tissue grows rapidly despite the ischemic condition, which replaces the infarcted heart tissues and leaves little room for any newly regenerated myocyte replacement. Up to now, there is no drug and therapeutic method available that can promote early reconstitution of the damaged coronary vasculature with newly formed vessels.

"Therefore, to realize the therapeutic value of angiogenesis in combating ischemic heart diseases, there is a need for chemical compounds possessing biological properties that can sufficiently promote early growth of new blood vessels in the infarct zone to quickly restore the coronary blood circulation once an ischemic event occurs."

In addition to the background information obtained for this patent application, NewsRx journalists also obtained the inventors' summary information for this patent application: "As one object of the present invention, there is provided a pharmaceutical composition for treating ischemic heart diseases which comprises one or more chemical compounds sharing a common backbone structure of formula (I), i.e., the compounds derived by substituting one or more hydrogen atoms at various positions of the backbone structure of formula (I). The base compound, i.e., the backbone structure of formula (I) itself without any substitution, has shown potent beneficial therapeutic effects in treating ischemic heart diseases by promoting angiogenesis and protecting against endothelial apoptosis, resulting in revascularization in infarcted myocardia and prevention of further ischemic death of the cardiomyocytes. The base compound is referred to as 'Ga' hereinafter. The compounds are known in the art but they are never known as possessing the above biological activities and therapeutic effects. In fact, the tannins, to which Ga belongs, are conventionally reviewed as non-active ingredients and in the process of identifying the active ingredients in herbal medicines researchers routinely discard the tannins as debris. Ga may be isolated from natural resources, particularly from plants or they may, with existing or future developed synthetic techniques, be obtained through total or semi-chemical syntheses.


"The backbone compound of formula I (also referred to as Ga in this application) can have substituents at various positions and retain similar biological activities as the backbone compound Ga. A substituent is an atom or group of atoms substituted in place of the hydrogen atom. The substitution can be achieved by methods known in the field of organic chemistry. As used in this application, the term 'a compound of formula I' encompasses the backbone compound itself and its substituted variants with similar biological activities.

"It is contemplated, as a person with ordinary skill in the art would contemplate, that the above backbone compound or its substituted variant may be made in various possible racemic, enantiomeric or diastereoisomeric isomer forms, may form salts with mineral and organic acids, and may also form derivatives such as N-oxides, prodrugs, bioisosteres. 'Prodrug' means an inactive form of the compound due to the attachment of one or more specialized protective groups used in a transient manner to alter or to eliminate undesirable properties in the parent molecule, which is metabolized or converted into the active compound inside the body (in vivo) once administered. 'Bioisostere' means a compound resulting from the exchange of an atom or of a group of atoms with another, broadly similar, atom or group of atoms. The objective of a bioisosteric replacement is to create a new compound with similar biological properties to the parent compound. The bioisosteric replacement may be physicochemically or topologically based. Making suitable prodrugs, bioisosteres, N-oxides, pharmaceutically acceptable salts or various isomers from a known compound (such as those disclosed in this specification) are within the ordinary skill of the art. Therefore, the present invention contemplates all suitable isomer forms, salts and derivatives of the above disclosed compounds.

"As used in the present application, the term 'functional derivative' means a prodrug, bioisostere, N-oxide, pharmaceutically acceptable salt or various isomer from the above-disclosed specific compound, which may be advantageous in one or more aspects compared with the parent compound. Making functional derivatives may be laborious, but some of the technologies involved are well known in the art. Various high-throughput chemical synthetic methods are available. For example, combinatorial chemistry has resulted in the rapid expansion of compound libraries, which when coupled with various highly efficient bio-screening technologies can lead to efficient discovering and isolating useful functional derivatives.

"The pharmaceutical composition may be formulated by conventional means known to people skilled in the pharmaceutical industry into a suitable dosage form, such as tablet, capsules, injection, solution, suspension, powder, syrup, etc., and be administered to a mammalian subject suffering coronary heart disease or myocardial infarction (MI) in a suitable manner. The formulation techniques are not part of the present invention and thus are not limitations to the scope of the present invention.

"In another aspect, the present invention provides a method of promoting revascularization in dead or damaged heart tissues caused by an ischemic heart disease, such as, for example, atherosclerosis of coronary arteries in a mammalian subject. The method comprises a step of administering an effective amount of a compound of formula (I) or its functional derivative to the mammalian subject.

"In still another aspect, present invention provides a method for treating, ameliorating or curing a pathological condition in a mammal, where the pathological condition, as judged by people skilled in medicine, can be treated or alleviated by up-regulating the expressions of angiogenic factors (VEGF and FGF) that promotes early revascularization in infarcted myocardium, and/or by inducing anti-apoptotic protein expression that inhibits apoptotic death of cardiomyocytes in the infarcted hearts and prevents the progressive extending of further ischemic injury and limiting infarct size. The method comprises a step of administering an effective amount of a compound of formula (I) or its functional derivative to the mammal.

"The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and thrilling a part of this disclosure. For a better understanding of the invention, its operating advantages, and specific objects attained by its use, reference should be made to the drawings and the following description in which there are illustrated and described preferred embodiments of the invention."

URL and more information on this patent application, see: Li, Ming; Cheng, Lei; Liu, Hong Wei. Pharmaceutical Composition and Method for Neoangiogenesis/Revascularization Useful in Treating Ischemic Heart Disease. Filed December 15, 2016 and posted April 13, 2017. Patent URL:

Keywords for this news article include: Patents, Therapy, Chemistry, Cardiology, Myocardium, Technology, Angiogenesis, Heart Attack, Cardiomyocyte, Heart Disease, Heart Disorders and Diseases, Cardiovascular Diseases and Conditions.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2017, NewsRx LLC

(c) 2017 NewsRx LLC

Pharmacy News Index
  Drug Delivery Systems
  FDA Final Approvals
  Front Page Healthcare News
  Generic Drugs
  Hospital Industry
  Internet Pharmacy
  IT in Healthcare
  Medicare & Medicaid
  Over-the-Counter Drugs
  Pharm Industry Trends and Policy
  Pharmaceutical Development
  Pharmaceutical Industry


Last Chance
Nov 20: Obesity Management: Overview of Pharmacotherapy
Last Chance
Nov 21: Standards of Practice for Filling Controlled Substance Prescriptions in Florida
Last Chance
Nov 22: Medical Marijuana: Examining the Science, Not the Politics
Nov 27: Drug Diversion and the Law: Updates and Considerations
Nov 28: An Integrative Approach to Managing Arthritis
Click for entire Webinar Calendar

Special Announcement

Free Membership
Enjoy Drug Search, industry newsletters and more...

Nursing Jobs
Are you a nurse looking for a job?

Check out the Nursing Job Source.

Your number one choice for nursing jobs.

Websites »
Copyright © 2017 Pharmacy Choice - All rights reserved.
Terms and Conditions | Privacy Statement